A Priori Error Estimates and Computational Studies for a Fermi Pencil-Beam Equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for the Fokker-planck and Fermi Pencil Beam Equations

We prove a posteriori error estimates for a nite element method for steady-state, energy dependent, Fokker-Planck and Fermi pencil beam equations in two space dimensions and with a forward-peaked scattering (i.e., with velocities varying within the right unit semicircle). Our estimates are based on a transversal symmetry assumption, together with a strong stability estimate for an associated du...

متن کامل

The streamline diffusion method with implicit integration for the multi-dimensional Fermi Pencil Beam equation

We derive error estimates in the appropriate norms, for the streamlinediffusion (SD) finite element methods for steady state, energy dependent,Fermi equation in three space dimensions. These estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.High order SD method together with implicit integration are used. The formulationis strongly consistent...

متن کامل

On Fully Discrete Schemes for the Fermi Pencil-beam Equation

We consider a Fermi pencil beam model in two space dimensions (x; y), where x is aligned with the beam's penetration direction and y together with the scaled angular variable z, correspond to a bounded symmetric , transversal cross section. We study some fully discrete numerical schemes using the standard Galerkin and streamline diiusion nite element methods for discretization of the transversa...

متن کامل

the streamline diffusion method with implicit integration for the multi-dimensional fermi pencil beam equation

we derive error estimates in the appropriate norms, for the streamlinediffusion (sd) finite element methods for steady state, energy dependent,fermi equation in three space dimensions. these estimates yield optimal convergencerates due to the maximal available regularity of the exact solution.high order sd method together with implicit integration are used. the formulationis strongly consistent...

متن کامل

Constructive A Priori Error Estimates for a Full Discrete Approximation of the Heat Equation

In this paper, we consider the constructive a priori error estimates for a full discrete numerical solution of the heat equation. Our method is based on the finite element Galerkin method with an interpolation in time that uses the fundamental solution for semidiscretization in space. The present estimates play an essential role in the numerical verification method of exact solutions for the no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Theoretical Transport

سال: 2018

ISSN: 2332-4309,2332-4325

DOI: 10.1080/23324309.2018.1496937